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Abstract. We study the glassy transition for simple liquids in the hypernetted chain (HNC)
approximation by means of an effective potential recently introduced. Integrating the HNC
equations for hard spheres, we find a transition scenario analogous to that of the long-range
disordered systems with ‘one-step replica symmetry breaking’. Our results agree qualitatively
with Monte Carlo simulations of three-dimensional hard spheres.

The hypernetted chain (HNC) approximation is one of the most widely used approaches
to describe the density–density correlation functiong(x) for liquids at equilibrium [1]. It
consists of a self-consistent integral equation that can be derived by a partial resummation of
the Mayer expansion, and corresponds to the variational equation for a suitable free-energy
functional [2, 3]. The simple HNC approach does not by itself allow us to detect freezing
[4]. The simple inspection of the pair correlation function certainly does not allow us to do
so, being qualitatively similar in the liquid and glass. Freezing, although present, can be
hidden if one concentrates on simple equilibrium quantities [5].

It has recently [3] been stressed that the freezing transition can be detected by combining
the HNC approximation with the replica method by studying the correlation functions among
different replicas of the same system in the presence of a potential which couples them. At
low temperatures (or at high density) one finds a self-consistent solution where different
replicas remain correlated also in the limit of zero coupling. This phenomenon corresponds
to freezing and it goes under the technical name of replica symmetry breaking.

In this letter we pursue this idea of studying the glass transition in the HCN
approximation. We are not concerned about the behaviour in the glassy phase. Our aim
is to use an effective potential recently introduced by two of us [6, 7], to study the glass
transition of HNC hard spheres in three dimensions. We compare the results with Monte
Carlo simulations of real hard spheres. The conceptual advantage of this approach is that all
the subtle points of the usual approach related to replica symmetry breaking are not needed
in order to expose the transition.
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The effective potential is constructed as follows. For a system described by the
coordinates of all the particlesx = (x1, . . . , xN) and with potential energyH(x) =∑1,N

i<j φ(xi − xj ).
Let us consider a reference configurationy chosen with probability exp(−β ′H(y))/

Z(β ′), whereβ ′ = 1/T ′ is some arbitrary inverse temperature. Let us define a distance
among configuration asd(x, y) = 1 − q(x, y), with the ‘overlap’ q(x, y) defined as
q(x, y) = 1

N

∑1,N
i,j w(|xi − yj |). w is an attractive potential which we choose as

w(r) = θ(r0 − r) with r0 a fraction (e.g. equal to 0.3) of the radius of the particles. To
very different configurations it corresponds to large distance and small overlap, to similar
configurations small distance and large overlap. We define a constrained Boltzmann–Gibbs
measure at temperatureT as

µ(x|y) = 1

Z(β, q, y)
e−βH(x)δ(q(x, y)− q) (1)

whereZ(β, q, y) is the integral overx of the numerator. This conditional measure allows
us to probe regions of the configuration space having vanishingly small probability, and as
we will see, it will help us to reveal the glassy structure hidden in the simple equilibrium
approach.

Introducing a Lagrange multiplier conjugated toq to enforce the delta function and
integrating over it by saddle point, one sees that the free energy associated to (1),V (q) =
−T logZ(β, q, y), can be computed as the Legendre transform ofF(ε) = −T logZ(β, ε, y)
with Z(β, ε, y) = ∫ dx e−β(H(x)−εq(x,y)). If the couplingε is positive there is an attraction to
the reference configurationy. Of special interest will be the casesε → 0+, while q will go
to a non-trivial value. The free energyF(ε) and the potentialV (q) should be self-averaging
with respect to the distribution ofy, and therefore be just functions of their argument and
the temperaturesβ and β ′. Hereafter, we will limit ourselves to the caseβ = β ′ which
will be enough to detect freezing in the system. It is conceptually important, however, to
consider the more general case if one would like to describe a system which, after crossing
the freezing temperature, remains confined in the vicinity of the configuration where it was
last able to thermalize.

In order to computeF(ε) in any physical system we need to averageZ(β, ε, y) over the
distribution ofy. This can be done in a convenient way by using the replica method, where
one writeslogZ = limr→0

Zr−1
r

, and computes the limit from an analytic continuation from
integerr. In principle the replica method can be avoided but it is quite useful to make all
the computations quite straightforward. Explicitly:

Zr =
∫

dx0 dx1 . . .dxr e−β
∑r

a=0H(xa)+βε
∑r

a=1 q(x0,xa) (2)

we have writtenx0 = y. The problem is reduced to that of an equilibrium mixture ofr + 1
species (withr → 0), and is formally similar to the one developed by Given, Stell and
collaborators to study liquids in random matrices [8]. The use of the formalism is, however,
different. In [8] the replica method was used to deal with the quenched disorder represented
by the medium, while for us the potential is a tool to probe regions of configuration space
of small Boltzmann probability and we do not have quenched disorder. The HNC equation
can be derived from the following free-energy functional [2, 3]

−2βF(ε) =
∫

ddx
r∑

a,b=0

ρ2gab(x)[log gab(x)− 1+ βφ(x)δab]

+2βε
r∑
a=1

ρ2g0a(x)w(x)+ TrL(ρh) (3)



Letter to the Editor L165

with L(u) = u − u2/2− log(1+ u), hab = gab − 1, the trace ofL is intended both on
replica indices and in the operator sense in space. The equations, and the relative value of
the free energy are obtained extremizing (3) over all the replica correlation functionsgab’s,
and extracting the terms of orderr.

In order to continue analyticallyF we use the ansatzgab = g00 for a = b = 0, gab = g10

for a = 0 or b = 0 anda 6= b and gab = g∗ab for both a and b different from 0. In this
letter we will only consider the replica-symmetric ansatzg∗ab = g11δab + g12(1− δab). We
warn the reader that this ansatz should give the correct value of the potentialV (q) for
high and low values ofq in the liquid phase, replica symmetry breaking effects are to be
expected in an intermediate regime [9] even in the liquid phase. The physical meaning of the
various elements ofgab within this ansatz is immediate. The elementg00 represents the pair
correlation function of the free system; as such the equation determining it decouples from
the other components in the limitr → 0 and coincides with the usual HNC equation for a
single-component system. In turn,g11 represents the pair correlation function of the coupled
system.g10 is the pair correlation among the quenched configuration and the annealed one,
while g12 represents the correlation between two systems coupled with the same quenched
system. This is the analogous of the Edwards–Anderson order parameter in disordered
systems [10], and represents the long time limit of the time-dependent autocorrelation
function at equilibrium [6].

In order to studyq as a function ofε we have solved the HNC equations in three
dimensions with the hard sphere potentialφ(r) = ∞ for r < 1, φ(r) = 0 for r > 1 for
various values of the density (using a space resolution equal to 0.01 and a large distance
cut-off equal to 10). The densityρ is the control parameter of the freezing transition in this
problem where there is no temperature. We have rescaledβε → ε, and chosenr0 = 0.3 in
the definition of the overlap. We have reconstructed the curvesq(ε) andV (q) following
the solution of the HNC equations starting from high and low values ofε and respectively
decreasing or increasing it slowly. In figures 1 and 2 we see that for low enough densityq

is a single-valued function and the potential is convex, with the minimum corresponding to
g01(x) = 1 for all x. This is a fair description of the liquid phase. Above a critical density
ρ∗ ≈ 1.14 the potential loses convexity, and a coupling can induce a transition between
a high and lowq phase [7]. Forρ = ρc ≈ 1.17 a second minimum at highq appears,
deepening and deepening as the density is increased. The presence of this second minimum
shows that aboveρc the system is in the glassy phase. If, by means of a largeε we prepare
the system in the vicinity ofy and we then letε → 0, the system remains confined. It
should be noted that while the shape ofV (q) depends on the particular definition of the
overlap, the properties of the minima of the potential do not, as they correspond to vanishing
coupling.

As discussed in [6, 7], the two-minima structure is associated to a Gibbs–Di Marzio
glass transition scenario. Atρc the ergodicity is broken and an extensively large number
of metastable statesN = eN6 contribute to the partition function. The relative height of
the two minima is exactly equal to the ‘configurational entropy’6, and as we can see in
figure 3, asρ is increased6 decreases, until it vanishes atρ = ρs ≈ 1.203. (The values of
ρc andρs are compatible with those found in [3], indeed the potential method reproduces the
results of replica symmetry breaking approach for the static and dynamic critical densities.)
The shape of the potential is the characteristic one of a system undergoing a first-order
phase transition. We can use Maxwell construction to locate the transition line in the plane
ε − ρ, which is shown in figure 4. The computation as it stands is not consistent for
ρ > ρs ; it gives a negative configurational entropy in that region. To describe consistently
the behaviour there, the replica symmetry breaking formalism of [3] is needed.
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Figure 1. The behaviour ofq as a function of ε for HNC hard spheres forρ =
1.14, 1.17, 1.19, 1.20. For high enough densityq is a multivalued function ofε. We have shown
only a portion of the curve in the region where it is multivalued. For graphical transparency in
this and the next figure we have joined the branches corresponding to the same density with a
line.
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Figure 2. The effective potential for HNC hard spheres. From top to bottomρ =
1.0, 1.14, 1.17, 1.19, 1.20. For low density, high up in the liquid phase the potential is convex.
In the glass phase two minima are present.

Although we did not try to compare quantitatively the values of the freezing density we
obtained with the one previously found in numerical simulations [11], we have performed
our own Monte Carlo simulations to test in a qualitative way the prediction of a first-order
transition in the presence of a coupling with a fixed configuration.
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Figure 3. The configurational entropy6 as a function ofρ.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.2 1.21

Figure 4. Phase diagram in the planeε−ρ. A first-order transition line terminating in a critical
point separates a lowq from a highq phase.

To generate configurations at fixed density we start withN particles of zero radius in
a three-dimensional box with periodic boundary conditions, and we let the radii grow until
two particles become in contact. At this point we make a Monte Carlo sweep and iterate the
procedure until the desired density is reached. The volume and radius (r) are at the point
rescaled in order to haver = 1. We thermalize the system for 4000 Monte Carlo sweeps and
use the configurationy reached as ‘external field’ for our coupled replicas experiments. The
relatively short thermalization is chosen in order to avoid crystallization. Having generated
the configurationy we let a coupled systemx evolve. For various densities, we start the
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Figure 5. The behaviour ofq as a function ofε for a system of 258 particles andρ = 1.04.
The different curves correspond to different thermalization times 2k for each value ofε. From
top to bottomk = 17, 19, 21, 23. For larger thermalization times the system seems to develop
a first-order jump inq.
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Figure 6. The overlap as a function of time in a logarithmic scale (the horizontal axis is ln2(t))
starting fromy at time 0 and evolving for fixedε. In this figureρ = 1.04 and from top to
bottomε = 0.8, 0.7, 0.6, 0.5, the number of particles is 1024.

evolution from the configurationy with an high value ofε and decrease the value ofε in
units of δε, making 2k Monte Carlo iterations for each value ofε. In figure 5 we plotq as
a function ofε for different values ofk. We see that, as it should be expected for a system
undergoing a first-order phase transition, the curves are smooth for lowk and tend to develop
a discontinuity for largek. We have presented here results forρ = 1.04. Other simulations
(which we do not display here) show that at lower density, the discontinuity occurs at higher
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ε, while it is pushed towards smallerε for higher density. From the quantitative point of
view there is about a 20% agreement on the value of the density at which a transition is
present in theε–q plane; however the qualitative prediction of a first-order transition at
values ofε of order 1 is clearly satisfied.

A different numerical experiment is presented in figure 6. Here we let the system evolve
at fixed ε starting at time zero fromx = y and we plot the overlap as a function of time.
Again we observe a behaviour compatible with a discontinuity ofq as a function ofε.

We see that the HNC approach predicts a glass transition scenario very close to the one
found in systems with ‘one-step replica symmetry breaking’ with a non-convex [6] effective
potential and Gibbs–Di Marzio entropy crisis [12]. The HNC is in this respect a genuine
mean-field theory, giving infinite life metastable states. In real systems metastable states
have a finite lifetime and the potential has to be a convex function ofq for any densities.
As it has been discussed many times in the application of the theory to real systems [13],
the picture should be corrected to take that into account. The densityρc, representing the
point where the relaxation time diverges in mean field, becomes a crossover value where
the dynamics is dominated by barrier jumping processes [4]. Elucidation of the dynamical
processes responsible for restoration of ergodicity beyond mean field is one of the currently
open issue in glass physics.

SF thanks the ‘Dipartimento di Fisica dell’ Università di Roma La Sapienza’ for kind
hospitality. MC and GP thank the ‘Abdus Salam ICTP’ for hospitality during the workshop
‘Statistical Physics of Frustrated Systems’ 18 August–7 November 1997.
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